Monotonicity and upper semicontinuity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Upper and Lower Semicontinuity of the Aumann Integral

Let (T,r,p) be a finite measure space, X be a Banach space, P be a metric space and let L,(y,X) denote the space of equivalence classes of X-valued Bochner integrable functions on (T, T, p). We show that if $I: T x P-2x is a set-valued function such that for each fixed p E P, 4(. , p) has a measurable graph and for each fixed TV T, 4(t;) is either upper or lower semicontinuous then the Aumann i...

متن کامل

Upper Semicontinuity of Attractors for Linear Multistep Methods

This paper sets out a theoretical framework for approximating the attractor A of a semigroup S(t) deened on a Banach space X by a q{step semi{discretization in time with constant step{length k. Using the one{step theory of Hale, Lin and Raugel, suucient conditions are established for the existence of a family of attractors fA k g X q , for the discrete semigroups S n k deened by the numerical m...

متن کامل

Upper semicontinuity of global attractors for damped wave equations

Abstract: We provide a new proof of the upper-semicontinuity property for the global attractors admitted by the solution operators associated with some strongly damped wave equations. In particular, we demonstrate an explicit control over semidistances between trajectories in the weak energy phase space in terms of the perturbation parameter. This result strengthens the recent work by Y. Wang a...

متن کامل

2 TESTING MONOTONICITY : O ( n ) UPPER BOUND

1 Overview 1.1 Last time • Proper learning for P implies property testing of P (generic, but quite inefficient) • Testing linearity (over GF[2]), i.e. P = {all parities}: (optimal) O 1-query 1-sided non-adaptive tester. • Testing monotonicity (P = {all monotone functions}: an efficient O n-query 1-sided non-adaptive tester.

متن کامل

Upper Semicontinuity of Attractors for Approximations of Semigroups and Partial Differential Equations

Suppose a given evolutionary equation has a compact attractor and the evolutionary equation is approximated by a finite-dimensional system. Conditions are given to ensure the approximate system has a compact attractor which converges to the original one as the approximation is refined. Applications are given to parabolic and hyperbolic partial differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1976

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1976-14225-5