Monotonicity and upper semicontinuity
نویسندگان
چکیده
منابع مشابه
On the Upper and Lower Semicontinuity of the Aumann Integral
Let (T,r,p) be a finite measure space, X be a Banach space, P be a metric space and let L,(y,X) denote the space of equivalence classes of X-valued Bochner integrable functions on (T, T, p). We show that if $I: T x P-2x is a set-valued function such that for each fixed p E P, 4(. , p) has a measurable graph and for each fixed TV T, 4(t;) is either upper or lower semicontinuous then the Aumann i...
متن کاملUpper Semicontinuity of Attractors for Linear Multistep Methods
This paper sets out a theoretical framework for approximating the attractor A of a semigroup S(t) deened on a Banach space X by a q{step semi{discretization in time with constant step{length k. Using the one{step theory of Hale, Lin and Raugel, suucient conditions are established for the existence of a family of attractors fA k g X q , for the discrete semigroups S n k deened by the numerical m...
متن کاملUpper semicontinuity of global attractors for damped wave equations
Abstract: We provide a new proof of the upper-semicontinuity property for the global attractors admitted by the solution operators associated with some strongly damped wave equations. In particular, we demonstrate an explicit control over semidistances between trajectories in the weak energy phase space in terms of the perturbation parameter. This result strengthens the recent work by Y. Wang a...
متن کامل2 TESTING MONOTONICITY : O ( n ) UPPER BOUND
1 Overview 1.1 Last time • Proper learning for P implies property testing of P (generic, but quite inefficient) • Testing linearity (over GF[2]), i.e. P = {all parities}: (optimal) O 1-query 1-sided non-adaptive tester. • Testing monotonicity (P = {all monotone functions}: an efficient O n-query 1-sided non-adaptive tester.
متن کاملUpper Semicontinuity of Attractors for Approximations of Semigroups and Partial Differential Equations
Suppose a given evolutionary equation has a compact attractor and the evolutionary equation is approximated by a finite-dimensional system. Conditions are given to ensure the approximate system has a compact attractor which converges to the original one as the approximation is refined. Applications are given to parabolic and hyperbolic partial differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1976
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1976-14225-5